Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Methods Cell Biol ; 184: 149-158, 2024.
Article in English | MEDLINE | ID: mdl-38555154

ABSTRACT

The functional importance of nitric oxide (NO) in the fields of immunology concerning its antimicrobial, anti-tumoral, anti-inflammatory, and immunosuppressive effects have made it inevitable to study its secretion from various cells. Nitrogen oxide synthase (NOS) is the enzyme responsible for synthesizing NO and its three isoforms function in a cell-dependent manner. NO is oxidized rapidly to Reactive nitrogen oxide species (RNOS) through which the roles of NO are being carried out. One of the major immune cells secreting NO is myeloid-derived suppressor cells (MDSCs). The function of these MDSCs in the suppression of T-cell proliferation as well as T-cell differentiation is found to be dependent on NO secretion. Apart from T-cell suppressive activity, NO is also known to interfere with natural killer (NK) cell functions. A convenient method to estimate NO secretion is by using Griess reagent named after Johann Peter Griess. In this method, NO reacts with the reagents to form a colored azo dye detectable using a microplate reader at a wavelength of 548nm. In this chapter, we summarized the detailed method of estimating NO from MDSCs by the Griess method.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Myeloid-Derived Suppressor Cells/physiology , Nitric Oxide , T-Lymphocytes , Cell Proliferation
2.
J Clin Invest ; 134(8)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421730

ABSTRACT

Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs), which are critical for orchestrating the antiinflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxia response through HIF1a were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted Hif1a conditional KO mice, respectively, attenuated G-MDSC-mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, single-cell RNA-Seq (scRNA-Seq) analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxia-response genes. These findings support the importance of a glycolysis/HIF1a axis in promoting G-MDSC antiinflammatory activity and biofilm persistence during PJI.


Subject(s)
Myeloid-Derived Suppressor Cells , Humans , Mice , Animals , Myeloid-Derived Suppressor Cells/physiology , Staphylococcus aureus , Biofilms , Granulocytes , Hypoxia
3.
Int Rev Cell Mol Biol ; 375: 191-220, 2023.
Article in English | MEDLINE | ID: mdl-36967153

ABSTRACT

Endometriosis is a common gynecological disorder defined by the presence of endometrial tissue outside the uterus. This is commonly associated with chronic pelvic pain, infertility, and dysmenorrhea, which occurs in approximately 10% of women of reproductive age. Although the exact mechanism remains uncertain, it has been widely accepted to be an estrogen-dependent and inflammatory disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immune cells with immunosuppressive capacity and non-immunological functions. They have been found to be aggressively involved in the pathologies of various disorders. In regards to tumors, the functions of MDSCs have been profoundly shown to inhibit tumor immune response and to promote angiogenesis, tumor metastasis, fibrosis, and epithelial-mesenchymal transition (EMT). In recent years, the elevation of MDSCs in endometriosis was reported by several studies that provoke the assumption that MDSCs might exert similar roles to promote the development of endometriosis. Such that, precision treatments targeting MDSCs might be a promising direction for future study. Herein, we will review the research progress of MDSCs in endometriosis and its potential relevance to the pathogenesis, progression, and therapeutics strategy of endometriosis.


Subject(s)
Endometriosis , Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Female , Myeloid-Derived Suppressor Cells/physiology , Epithelial-Mesenchymal Transition
4.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36150744

ABSTRACT

BACKGROUND: Immune suppression is common in neoplasia and a major driver is tumor-induced myeloid dysfunction. Yet, overcoming such myeloid cell defects remains an untapped strategy to reverse suppression and improve host defense. Exposure of bone marrow progenitors to heightened levels of myeloid growth factors in cancer or following certain systemic treatments promote abnormal myelopoiesis characterized by the production of myeloid-derived suppressor cells (MDSCs) and a deficiency in antigen-presenting cell function. We previously showed that a novel immune modulator, termed 'very small size particle' (VSSP), attenuates MDSC function in tumor-bearing mice, which was accompanied by an increase in dendritic cells (DCs) suggesting that VSSP exhibits myeloid differentiating properties. Therefore, here, we addressed two unresolved aspects of the mechanism of action of this unique immunomodulatory agent: (1) does VSSP alter myelopoiesis in the bone marrow to redirect MDSC differentiation toward a monocyte/macrophage or DC fate? and (2) does VSSP mitigate the frequency and suppressive function of human tumor-induced MDSCs? METHODS: To address the first question, we first used a murine model of granulocyte-colony stimulating factor-driven emergency myelopoiesis following chemotherapy-induced myeloablation, which skews myeloid output toward MDSCs, especially the polymorphonuclear (PMN)-MDSC subset. Following VSSP treatment, progenitors and their myeloid progeny were analyzed by immunophenotyping and MDSC function was evaluated by suppression assays. To strengthen rigor, we validated our findings in tumor-bearing mouse models. To address the second question, we conducted a clinical trial in patients with metastatic renal cell carcinoma, wherein 15 patients were treated with VSSP. Endpoints in this study included safety and impact on PMN-MDSC frequency and function. RESULTS: We demonstrated that VSSP diminished PMN-MDSCs by shunting granulocyte-monocyte progenitor differentiation toward monocytes/macrophages and DCs with heightened expression of the myeloid-dependent transcription factors interferon regulatory factor-8 and PU.1. This skewing was at the expense of expansion of granulocytic progenitors and rendered the remaining MDSCs less suppressive. Importantly, these effects were also demonstrated in a clinical setting wherein VSSP monotherapy significantly reduced circulating PMN-MDSCs, and their suppressive function. CONCLUSIONS: Altogether, these data revealed VSSP as a novel regulator of myeloid biology that mitigates MDSCs in cancer patients and reinstates a more normal myeloid phenotype that potentially favors immune activation over immune suppression.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Myeloid-Derived Suppressor Cells , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/therapy , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/therapy , Myeloid-Derived Suppressor Cells/physiology , Prevalence
5.
Cancer Gene Ther ; 29(11): 1791-1800, 2022 11.
Article in English | MEDLINE | ID: mdl-35840667

ABSTRACT

TAZ, one of the key effectors in the Hippo pathway, is often dysregulated in breast cancer, leading to cancer stemness, survival, and metastasis. However, the mechanistic bases of these tumor outcomes are incompletely understood and even less is known about the potential role played by the non-malignant cellular constituents of the tumor microenvironment (TME). Here, we revealed an inverse correlation between TAZ expression and survival in triple-negative breast cancer (TNBC), but not other subtypes of breast cancer. We found that TAZ knockdown in two murine TNBC tumor cell line models significantly inhibited tumor growth and metastasis in immune competent but not immune deficient hosts. RNA-seq analyses identified substantial alterations in immune components in TAZ knockdown tumors. Using mass cytometry analysis, we found that TAZ-deficiency altered the immune landscape of the TME leading to significant reductions in immune suppressive populations, namely myeloid-derived suppressor cells (MDSCs) and macrophages accompanied by elevated CD8+ T cell/myeloid cell ratios. Mechanistic studies demonstrated that TAZ-mediated tumor growth was MDSC-dependent in that MDSC depletion led to reduced tumor growth in control, but not TAZ-knockdown tumor cells. Altogether, we identified a novel non-cancer cell-autonomous mechanism by which tumor-intrinsic TAZ expression aids tumor progression. Thus, our findings advance an understanding of the crosstalk between tumor-derived TAZ expression and the immune contexture within the TME, which may lead to new therapeutic interventions for TNBC or other TAZ-driven cancers.


Subject(s)
Mammary Neoplasms, Animal , Myeloid-Derived Suppressor Cells , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Mammary Neoplasms, Animal/genetics , Myeloid-Derived Suppressor Cells/physiology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/genetics
6.
Diabetes ; 71(3): 470-482, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35040474

ABSTRACT

We previously showed that treating NOD mice with an agonistic monoclonal anti-TLR4/MD2 antibody (TLR4-Ab) reversed acute type 1 diabetes (T1D). Here, we show that TLR4-Ab reverses T1D by induction of myeloid-derived suppressor cells (MDSCs). Unbiased gene expression analysis after TLR4-Ab treatment demonstrated upregulation of genes associated with CD11b+Ly6G+ myeloid cells and downregulation of T-cell genes. Further RNA sequencing of purified, TLR4-Ab-treated CD11b+ cells showed significant upregulation of genes associated with bone marrow-derived CD11b+ cells and innate immune system genes. TLR4-Ab significantly increased percentages and numbers of CD11b+ cells. TLR4-Ab-induced CD11b+ cells, derived ex vivo from TLR4-Ab-treated mice, suppress T cells, and TLR4-Ab-conditioned bone marrow cells suppress acute T1D when transferred into acutely diabetic mice. Thus, the TLR4-Ab-induced CD11b+ cells, by the currently accepted definition, are MDSCs able to reverse T1D. To understand the TLR4-Ab mechanism, we compared TLR4-Ab with TLR4 agonist lipopolysaccharide (LPS), which cannot reverse T1D. TLR4-Ab remains sequestered at least 48 times longer than LPS within early endosomes, alters TLR4 signaling, and downregulates inflammatory genes and proteins, including nuclear factor-κB. TLR4-Ab in the endosome, therefore, induces a sustained, attenuated inflammatory response, providing an ideal "second signal" for the activation/maturation of MDSCs that can reverse acute T1D.


Subject(s)
Antibodies, Monoclonal/metabolism , Diabetes Mellitus, Type 1/drug therapy , Endosomes/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Toll-Like Receptor 4/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , CD11b Antigen/analysis , Diabetes Mellitus, Type 1/immunology , Female , Gene Expression Regulation/immunology , Mice , Mice, Inbred NOD , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/physiology
7.
J Innate Immun ; 14(3): 257-274, 2022.
Article in English | MEDLINE | ID: mdl-34763332

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a compendium of immature myeloid cells that exhibit potent T-cell suppressive capacity and expand during pathological conditions such as cancer and chronic infections. Although well-characterized in cancer, the physiology of MDSCs in the infection setting remains enigmatic. Here, we integrated single-cell RNA sequencing (scRNA-seq) and functional metabolic profiling to gain deeper insights into the factors governing the generation and maintenance of MDSCs in chronic Staphylococcus aureus infection. We found that MDSCs originate not only in the bone marrow but also at extramedullary sites in S. aureus-infected mice. scRNA-seq showed that infection-driven MDSCs encompass a spectrum of myeloid precursors in different stages of differentiation, ranging from promyelocytes to mature neutrophils. Furthermore, the scRNA-seq analysis has also uncovered valuable phenotypic markers to distinguish mature myeloid cells from immature MDSCs. Metabolic profiling indicates that MDSCs exhibit high glycolytic activity and high glucose consumption rates, which are required for undergoing terminal maturation. However, rapid glucose consumption by MDSCs added to infection-induced perturbations in the glucose supplies in infected mice hinders the terminal maturation of MDSCs and promotes their accumulation in an immature stage. In a proof-of-concept in vivo experiment, we demonstrate the beneficial effect of increasing glucose availability in promoting MDSC terminal differentiation in infected mice. Our results provide valuable information of how metabolic alterations induced by infection influence reprogramming and differentiation of MDSCs.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Staphylococcal Infections , Animals , Glucose , Mice , Myeloid-Derived Suppressor Cells/physiology , Persistent Infection , Staphylococcus aureus
8.
Front Immunol ; 12: 754083, 2021.
Article in English | MEDLINE | ID: mdl-34712241

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a hetero geneous group of cells, which can suppress the immune response, promote tumor progression and impair the efficacy of immunotherapies. Consequently, the pharmacological targeting of MDSC is emerging as a new immunotherapeutic strategy to stimulate the natural anti-tumor immune response and potentiate the efficacy of immunotherapies. Herein, we leveraged genetically modified models and a small molecule inhibitor to validate Calcium-Calmodulin Kinase Kinase 2 (CaMKK2) as a druggable target to control MDSC accumulation in tumor-bearing mice. The results indicated that deletion of CaMKK2 in the host attenuated the growth of engrafted tumor cells, and this phenomenon was associated with increased antitumor T cell response and decreased accumulation of MDSC. The adoptive transfer of MDSC was sufficient to restore the ability of the tumor to grow in Camkk2-/- mice, confirming the key role of MDSC in the mechanism of tumor rejection. In vitro studies indicated that blocking of CaMKK2 is sufficient to impair the yield of MDSC. Surprisingly, MDSC generated from Camkk2-/- bone marrow cells also showed a higher ability to terminally differentiate toward more immunogenic cell types (e.g inflammatory macrophages and dendritic cells) compared to wild type (WT). Higher intracellular levels of reactive oxygen species (ROS) accumulated in Camkk2-/- MDSC, increasing their susceptibility to apoptosis and promoting their terminal differentiation toward more mature myeloid cells. Mechanistic studies indicated that AMP-activated protein kinase (AMPK), which is a known CaMKK2 proximal target controlling the oxidative stress response, fine-tunes ROS accumulation in MDSC. Accordingly, failure to activate the CaMKK2-AMPK axis can account for the elevated ROS levels in Camkk2-/- MDSC. These results highlight CaMKK2 as an important regulator of the MDSC lifecycle, identifying this kinase as a new druggable target to restrain MDSC expansion and enhance the efficacy of anti-tumor immunotherapy.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase/physiology , Myeloid-Derived Suppressor Cells/enzymology , Neoplasm Proteins/physiology , AMP-Activated Protein Kinases/physiology , Adoptive Transfer , Animals , Apoptosis , Calcium-Calmodulin-Dependent Protein Kinase Kinase/deficiency , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Female , Lymphocyte Depletion , Lymphoma/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mitochondria/metabolism , Myeloid-Derived Suppressor Cells/physiology , Myeloid-Derived Suppressor Cells/transplantation , Myelopoiesis , Reactive Oxygen Species , Tumor Microenvironment
9.
Biomed Pharmacother ; 144: 112346, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34678727

ABSTRACT

The expansion of myeloid-derived suppressor cells (MDSCs), known as heterogeneous population of immature myeloid cells, is enhanced during several pathological conditions such as inflammatory or viral respiratory infections. It seems that the way MDSCs behave in infection depends on the type and the virulence mechanisms of the invader pathogen, the disease stage, and the infection-related pathology. Increasing evidence showing that in correlation with the severity of the disease, MDSCs are accumulated in COVID-19 patients, in particular in those at severe stages of the disease or ICU patients, contributing to pathogenesis of SARS-CoV2 infection. Based on the involved subsets, MDSCs delay the clearance of the virus through inhibiting T-cell proliferation and responses by employing various mechanisms such as inducing the secretion of anti-inflammatory cytokines, inducible nitric oxide synthase (iNOS)-mediated hampering of IFN-γ production, or forcing arginine shortage. While the immunosuppressive characteristic of MDSCs may help to preserve the tissue homeostasis and prevent hyperinflammation at early stages of the infection, hampering of efficient immune responses proved to exert significant pathogenic effects on severe forms of COVID-19, suggesting the targeting of MDSCs as a potential intervention to reactivate T-cell immunity and thereby prevent the infection from developing into severe stages of the disease. This review tried to compile evidence on the roles of different subsets of MDSCs during viral respiratory infections, which is far from being totally understood, and introduce the promising potential of MDSCs for developing novel diagnostic and therapeutic approaches, especially against COVID-19 disease.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19 , Myeloid-Derived Suppressor Cells , COVID-19/immunology , COVID-19/virology , Drug Discovery , Humans , Immune Tolerance , Immunity, Innate , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/physiology , SARS-CoV-2
10.
Cancer Lett ; 523: 72-81, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34560229

ABSTRACT

Mechanistic target of rapamycin (mTOR) forms two distinct complexes, mTOR complex 1 (mTORC1) and mTORC2. Here we investigated the antitumor effect of dual mTORC1/2 inhibitor AZD2014 on epithelial ovarian cancer (EOC) and its potential effect on immunosuppressive myeloid-derived suppressor cells (MDSCs). Immunohistochemical analysis of mTORC1 and mTORC2 was performed on a human ovarian cancer tissue microarray. High mTORC2 expression level was associated with shorter survival in EOC, whereas mTORC1 was not correlate with patients' prognosis. AZD2014 suppressed mTOR signaling pathway in ovarian cancer cells, inhibited proliferation and induced G1-phase cell cycle arrest and apoptosis. In tumor-bearing mice, AZD2014 treatment limited tumor growth, reduced peritoneal ascites, and prolonged survival. AZD2014 specifically reduced MDSCs migration and accumulation in EOC peritoneal fluid but not in the spleen. Moreover, subsequent AZD2014 treatment after cisplatin chemotherapy delayed EOC recurrence. Collectively, we observed that high mTORC2 expression level in EOC indicated a poor prognosis. Remarkably, in tumor-bearing mice, AZD2014 diminished MDSC accumulation and delayed tumor growth and recurrence.


Subject(s)
Benzamides/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Morpholines/pharmacology , Myeloid-Derived Suppressor Cells/drug effects , Ovarian Neoplasms/drug therapy , Pyrimidines/pharmacology , Animals , Apoptosis , Benzamides/adverse effects , Benzamides/therapeutic use , Carcinoma, Ovarian Epithelial/mortality , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Female , Humans , Mechanistic Target of Rapamycin Complex 1/analysis , Mechanistic Target of Rapamycin Complex 2/analysis , Mice , Mice, Inbred C57BL , Morpholines/adverse effects , Morpholines/therapeutic use , Myeloid-Derived Suppressor Cells/physiology , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Pyrimidines/adverse effects , Pyrimidines/therapeutic use , TOR Serine-Threonine Kinases/physiology , Xenograft Model Antitumor Assays
11.
Cells ; 10(8)2021 08 17.
Article in English | MEDLINE | ID: mdl-34440879

ABSTRACT

Massive platelet activation and thrombotic events characterize severe COVID-19, highlighting their critical role in SARS-CoV-2-induced immunopathology. Since there is a well-described expansion of myeloid-derived suppressor cells (MDSC) in severe COVID-19, we evaluated their possible role in platelet activation during SARS-CoV-2 infection. During COVID-19, a lower plasmatic L-arginine level was observed compared to healthy donors, which correlated with MDSC frequency. Additionally, activated GPIIb/IIIa complex (PAC-1) expression was higher on platelets from severe COVID-19 patients compared to healthy controls and inversely correlated with L-arginine plasmatic concentration. Notably, MDSC were able to induce PAC-1 expression in vitro by reducing L-arginine concentration, indicating a direct role of PMN-MDSC in platelet activation. Accordingly, we found a positive correlation between ex vivo platelet PAC-1 expression and PMN-MDSC frequency. Overall, our data demonstrate the involvement of PMN-MDSC in triggering platelet activation during COVID-19, highlighting a novel role of MDSC in driving COVID-19 pathogenesis.


Subject(s)
Arginine/immunology , COVID-19/immunology , Myeloid-Derived Suppressor Cells/immunology , Platelet Activation , Thrombosis/etiology , Adult , Aged , Aged, 80 and over , Arginine/physiology , COVID-19/complications , COVID-19/physiopathology , Female , Humans , Male , Middle Aged , Myeloid-Derived Suppressor Cells/physiology , Young Adult
12.
Mol Immunol ; 137: 187-200, 2021 09.
Article in English | MEDLINE | ID: mdl-34274794

ABSTRACT

Aging is associated with excessive bone loss that is not counteracted with the development of new bone. However, the mechanisms underlying age-related bone loss are not completely clear. Myeloid-derived suppressor cells (MDSCs) are a population of heterogenous immature myeloid cells with immunosuppressive functions that are known to stimulate tumor-induced bone lysis. In this study, we investigated the association of MDSCs and age-related bone loss in mice. Our results shown that aging increased the accumulation of MDSCs in the bone marrow and spleen, while in the meantime potentiated the osteoclastogenic activity of the CD11b+Ly6ChiLy6G+ monocytic subpopulation of MDSCs. In addition, CD11b+Ly6ChiLy6G+ MDSCs from old mice exhibited increased expression of c-fms compared to young mice, and were more sensitive to RANKL-induced osteoclast gene expression. On the other hand, old mice showed elevated production of IL-6 and receptor activator of nuclear factor kappa-B ligand (RANKL) in the circulation. Furthermore, IL-6 and RANKL were able to induce the proliferation of CD11b+Ly6ChiLy6G+ MDSCs and up-regulate c-fms expression. Moreover, CD11b+Ly6ChiLy6G+ MDSCs obtained from old mice showed increased antigen-specific T cell suppressive function, pStat3 expression, and cytokine production in response to inflammatory stimulation, compared to those cells obtained from young mice. Our findings suggest that CD11b+Ly6ChiLy6G+ MDSCs are a source of osteoclast precursors that together with the presence of persistent, low-grade inflammation, contribute to age-associated bone loss in mice.


Subject(s)
Aging/physiology , Myeloid Cells/physiology , Myeloid-Derived Suppressor Cells/physiology , Osteoclasts/physiology , Osteogenesis/physiology , Aging/metabolism , Animals , Antigens, Ly/metabolism , Cell Differentiation/physiology , Cell Proliferation/physiology , Disease Models, Animal , Gene Expression/physiology , Inflammation/metabolism , Inflammation/pathology , Lymphocyte Activation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Monocytes/metabolism , Monocytes/physiology , Myeloid Cells/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Osteoclasts/metabolism , Spleen/metabolism , Spleen/physiology
13.
Cell Death Dis ; 12(6): 594, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103476

ABSTRACT

Aging is one of the most prominent risk factors for heart failure. Myeloid-derived suppressor cells (MDSCs) accumulate in aged tissue and have been confirmed to be associated with various aging-related diseases. However, the role of MDSCs in the aging heart remains unknown. Through RNA-seq and biochemical approaches, we found that granulocytic MDSCs (G-MDSCs) accumulated significantly in the aging heart compared with monocytic MDSCs (M-MDSCs). Therefore, we explored the effects of G-MDSCs on the aging heart. We found that the adoptive transfer of G-MDSCs of aging mice to young hearts resulted in cardiac diastolic dysfunction by inducing cardiac fibrosis, similar to that in aging hearts. S100A8/A9 derived from G-MDSCs induced inflammatory phenotypes and increased the osteopontin (OPN) level in fibroblasts. The upregulation of fibroblast growth factor 2 (FGF2) expression in fibroblasts mediated by G-MDSCs promoted antisenescence and antiapoptotic phenotypes of fibroblasts. SOX9 is the downstream gene of FGF2 and is required for FGF2-mediated and G-MDSC-mediated profibrotic effects. Interestingly, both FGF2 levels and SOX9 levels were upregulated in fibroblasts but not in G-MDSCs and were independent of S100A8/9. Therefore, a novel FGF2-SOX9 signaling axis that regulates fibroblast self-renewal and antiapoptotic phenotypes was identified. Our study revealed the mechanism by which G-MDSCs promote cardiac fibrosis via the secretion of S100A8/A9 and the regulation of FGF2-SOX9 signaling in fibroblasts during aging.


Subject(s)
Cellular Senescence/physiology , Myeloid-Derived Suppressor Cells/physiology , Myocardium/pathology , Myofibroblasts/physiology , Aging/pathology , Aging/physiology , Animals , Calgranulin A/metabolism , Calgranulin B/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/pathology , Cells, Cultured , Fibroblast Growth Factor 2/metabolism , Fibrosis/etiology , Fibrosis/metabolism , Granulocytes/physiology , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , SOX9 Transcription Factor/metabolism , Signal Transduction
14.
Cells ; 10(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946532

ABSTRACT

Uterine cervical and endometrial cancers are the two most common gynecological malignancies. As demonstrated in other types of solid malignancies, an increased number of circulating or tumor-infiltrating myeloid-derived suppressor cells (MDSCs) have also been observed in uterine cervical and endometrial cancers, and increased MDSCs are associated with an advanced stage, a short survival, or a poor response to chemotherapy or radiotherapy. In murine models of uterine cervical and endometrial cancers, MDSCs have been shown to play important roles in the progression of cancer. In this review, we have introduced the definition of MDSCs and their functions, discussed the roles of MDSCs in uterine cervical and endometrial cancer progression, and reviewed treatment strategies targeting MDSCs, which may exhibit growth-inhibitory effects and enhance the efficacy of existing anticancer treatments.


Subject(s)
Endometrial Neoplasms/drug therapy , Myeloid-Derived Suppressor Cells/drug effects , Uterine Cervical Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Clinical Trials as Topic , Female , Humans , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/physiology
15.
Shock ; 56(5): 658-666, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33882515

ABSTRACT

ABSTRACT: Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of immature myeloid cells hallmarked by their potent immunosuppressive function in a vast array of pathologic conditions. MDSCs have recently been shown to exhibit marked expansion in acute inflammatory states including traumatic injury, burn, and sepsis. Although MDSCs have been well characterized in cancer, there are significant gaps in our knowledge of their functionality in trauma and sepsis, and their clinical significance remains unclear. It is suggested that MDSCs serve an important role in quelling profound inflammatory responses in the acute setting; however, MDSC accumulation may also predispose patients to developing persistent immune dysregulation with increased risk for nosocomial infections, sepsis, and multiorgan failure. Whether MDSCs may serve as the target for novel therapeutics or an important biomarker in trauma and sepsis is yet to be determined. In this review, we will discuss the current understanding of MDSCs within the context of specific traumatic injury types and sepsis. To improve delineation of their functional role, we propose a systemic approach to MDSC analysis including phenotypic standardization, longitudinal analysis, and expansion of clinical research.


Subject(s)
Inflammation/immunology , Myeloid-Derived Suppressor Cells/physiology , Wounds and Injuries/immunology , Humans
16.
Cell Immunol ; 363: 104312, 2021 05.
Article in English | MEDLINE | ID: mdl-33652258

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) impair protective anti-tumor immunity and remain major obstacles that stymie the effectiveness of promising cancer therapies. Diverse tumor-derived stressors galvanize the differentiation, intra-tumoral expansion, and immunomodulatory function of MDSCs. These tumor-associated 'axes of stress' underwrite the immunosuppressive programming of MDSCs in cancer and contribute to the phenotypic/functional heterogeneity that characterize tumor-MDSCs. This review discusses various tumor-associated axes of stress that direct MDSC development, accumulation, and immunosuppressive function, as well as current strategies aimed at overcoming the detrimental impact of MDSCs in cancer. To better understand the constellation of signals directing MDSC biology, we herein summarize the pivotal roles, signaling mediators, and effects of reactive oxygen/nitrogen species-related stress, chronic inflammatory stress, hypoxia-linked stress, endoplasmic reticulum stress, metabolic stress, and therapy-associated stress on MDSCs. Although therapeutic targeting of these processes remains mostly pre-clinical, intercepting signaling through the axes of stress could overcome MDSC-related immune suppression in tumor-bearing hosts.


Subject(s)
Myeloid-Derived Suppressor Cells/immunology , Neoplasms/physiopathology , Stress, Physiological/physiology , Cell Differentiation , Cell Line, Tumor , Endoplasmic Reticulum Stress/immunology , Endoplasmic Reticulum Stress/physiology , Humans , Immunosuppression Therapy/methods , Myeloid Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/physiology , Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/immunology , Stress, Physiological/immunology
17.
Front Immunol ; 12: 627072, 2021.
Article in English | MEDLINE | ID: mdl-33708218

ABSTRACT

The accumulation of myeloid-derived suppressor cells (MDSCs) is one of the major obstacles to achieve an appropriate anti-tumor immune response and successful tumor immunotherapy. MDSCs in tumor-bearing hosts are primarily polymorphonuclear (PMN-MDSCs). However, the mechanisms regulating the development of MDSCs remain poorly understood. In this report, we showed that interferon regulatory factor 4 (IRF4) plays a key role in the development of PMN-MDSCs, but not monocytic MDSCs. IRF4 deficiency caused a significant elevation of PMN-MDSCs and enhanced the suppressive activity of PMN-MDSCs, increasing tumor growth and metastasis in mice. Mechanistic studies showed that c-Myc was up-regulated by the IRF4 protein. Over-expression of c-Myc almost abrogated the effects of IRF4 deletion on PMN-MDSCs development. Importantly, the IRF4 expression level was negatively correlated with the PMN-MDSCs frequency and tumor development but positively correlated with c-Myc expression in clinical cancer patients. In summary, this study demonstrated that IRF4 represents a novel regulator of PMN-MDSCs development in cancer, which may have predictive value for tumor progression.


Subject(s)
Interferon Regulatory Factors/physiology , Myeloid-Derived Suppressor Cells/physiology , Neoplasms/immunology , Proto-Oncogene Proteins c-myc/genetics , Transcription, Genetic , Animals , Cell Proliferation , Female , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Proto-Oncogene Proteins c-myc/physiology
18.
Cell Immunol ; 362: 104298, 2021 04.
Article in English | MEDLINE | ID: mdl-33592541

ABSTRACT

Myeloid derived suppressor cells (MDSCs) are a highly heterogeneous population of immature immune cells with immunosuppressive functions that are recruited to the tumor microenvironment (TME). MDSCs promote tumor growth and progression by inhibiting immune effector cell proliferation and function. MDSCs are affected by both novel anti-cancer therapies targeting the immune system to promote anti-tumor immunity, as well as by conventional treatments such as radiotherapy. Following radiotherapy, cytoplasmic double stranded DNA stimulates the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, resulting in type I interferon production. Effectiveness of radiotherapy and cGAS/STING signaling are closely intertwined: activation of cGAS and STING is key to generate systemic anti-tumor immunity after irradiation. This review focuses on how radiotherapy and cGAS/STING signaling in MDSCs and/or tumor cells impact MDSC recruitment, expansion and function. The influence of conventional and ablative radiotherapy treatment schedules, inflammatory response following radiotherapy, and hypoxia are discussed as MDSC modulators.


Subject(s)
Membrane Proteins/metabolism , Myeloid-Derived Suppressor Cells/immunology , Nucleotidyltransferases/metabolism , Humans , Immunity, Innate , Interferon Type I/immunology , Interferon Type I/metabolism , Membrane Proteins/physiology , Myeloid-Derived Suppressor Cells/physiology , Neoplasms/pathology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/physiology , Radiotherapy/methods , Signal Transduction/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/physiology
19.
Cell Immunol ; 362: 104301, 2021 04.
Article in English | MEDLINE | ID: mdl-33588246

ABSTRACT

Immuno checkpoint blockade (ICB) targeting the PD-1/PD-L1 axis is the main breakthrough for the treatment of several cancers. Nevertheless, not all patients benefit from this treatment and clinical response not always correlates with PD-L1 expression by tumor cells. The tumor microenvironment, including myeloid derived suppressor cells (MDSCs), can influence therapeutic resistance to ICB. MDSCs also express PD-L1, which contributes to their suppressive activity. Moreover, anticancer therapies including chemotherapy, radiotherapy, hormone- and targeted- therapies can modulate MDSCs recruitment, activity and PD-L1 expression. Such effects can be induced also by innovative anticancer treatments targeting metabolism and lifestyle. The outcome on cancer progression can be either positive or negative, depending on tumor type, treatment schedule and possible combination with ICB. Further studies are needed to better understand the effects of cancer therapies on the PD-1/PD-L1 axis, to identify patients that could benefit from combinatorial regimens including ICB or that rather should avoid it.


Subject(s)
B7-H1 Antigen/metabolism , Myeloid-Derived Suppressor Cells/immunology , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/immunology , B7-H1 Antigen/physiology , Cell Line, Tumor , Humans , Immunotherapy , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/physiology , Neoplasms/immunology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/immunology , Tumor Microenvironment
20.
Obesity (Silver Spring) ; 29(6): 944-953, 2021 06.
Article in English | MEDLINE | ID: mdl-33616242

ABSTRACT

Obesity is a risk factor for developing several cancers. The dysfunctional metabolism and chronic activation of inflammatory pathways in obesity create a milieu that supports tumor initiation, progression, and metastasis. Obesity-associated metabolic, endocrine, and inflammatory mediators, besides interacting with cells leading to a malignant transformation, also modify the intrinsic metabolic and functional characteristics of immune myeloid cells. Here, the evidence supporting the hypothesis that obesity metabolically primes and promotes the expansion of myeloid cells with immunosuppressive and pro-oncogenic properties is discussed. In consequence, the accumulation of these cells, such as myeloid-derived suppressor cells and some subtypes of adipose-tissue macrophages, creates a microenvironment conducive to tumor development. In this review, the role of lipids, insulin, and leptin, which are dysregulated in obesity, is emphasized, as well as dietary nutrients in metabolic reprogramming of these myeloid cells. Moreover, emerging evidence indicating that obesity enhances immunotherapy response and hypothesized mechanisms are summarized. Priorities in deeper exploration involving the mechanisms of cross talk between metabolic disorders and myeloid cells related to cancer risk in patients with obesity are highlighted.


Subject(s)
Immunotherapy , Myeloid-Derived Suppressor Cells/physiology , Neoplasms/etiology , Obesity/immunology , Adipose Tissue/metabolism , Animals , Carcinogenesis/immunology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Humans , Immunotherapy/methods , Inflammation Mediators/metabolism , Leptin/metabolism , Macrophages/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Neoplasm Metastasis , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/prevention & control , Obesity/complications , Obesity/metabolism , Obesity/therapy , Risk Factors , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...